22 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Genetic diversity in human erythrocyte pyruvate kinase

    No full text
    International audiencePreviously, we have shown that pyruvate kinase, liver and red cell isoform (PKLR) deficiency protects mice in vivo against blood-stage malaria, and observed that reduced PKLR function protects human erythrocytes against Plasmodium falciparum replication ex vivo. Here, we have sequenced the human PKLR gene in 387 individuals from malaria-endemic and other regions in order to assess genetic variability in different geographical regions and ethnic groups. Rich genetic diversity was detected in PKLR, including 59 single-nucleotide polymorphisms and several loss-of-function variants (frequency 1.5%). Haplotype distribution and allele frequency varied considerably with geography. Neutrality testing suggested positive selection of the genein the sub-Saharan African and Pakistan populations. It is possible that such positive selection involves the malarial parasite

    Association of antibodies to Plasmodium falciparum merozoite surface protein-4 with protection against clinical malaria

    No full text
    Identification of parasite antigens targeted by immune effector mechanisms that confer protection against malaria is important for the design of a multi-component malaria vaccine. Here, the association of antibodies reacting with the Plasmodium falciparum merozoite surface protein-4 (MSP4) with protection against clinical malaria was investigated in a Senegalese community living in an area of moderate, seasonal malaria transmission. Blood samples were collected at the end of an 8-month long dry season without any recorded parasite transmission from 206 residents enrolled in a prospective follow-up study. Active daily clinical monitoring was implemented during the subsequent five months. Entomologic monitoring documented parasite transmission during the first three months of follow-up. Serum IgG levels were determined by ELISA against three MSP4 baculovirus-encoded recombinant protein constructs, namely the full-length MSP4p40, MSP4p30 devoid of a highly polymorphic sequence stretch and the conserved C-terminal EGF-containing MSP4p20, as well as against a merozoite crude extract. Community seroprevalence against all three constructs was quite high, the lowest being against MSP4p30. Seroprevalence and antibody levels against the three MSP4 constructs were age-dependent. IgG1 dominated the anti-MSP4p20 responses, while both IgG1 and IgG3 were observed against MSP4p40. Anti-MSP4 antibodies were associated with the antibody-dependent respiratory burst (ADRB) activity in a functional assay of merozoite phagocytosis by polymorphonuclear cells. Importantly, high antibody levels against each of the three MSP4 constructs at the end of the dry season were associated with reduced morbidity during the subsequent transmission season in an age-adjusted Poisson regression model (IRR = 0.65 [0.50-0.83], P < 0.001 for responses over the median values). These data are consistent with a protective role for the naturally acquired anti-MSP4 antibodies and support further development of MSP4 as a candidate component of malaria vaccine

    Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015

    Get PDF
    In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement
    corecore